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ABSTRACT
Modern large language model (LLM) inference workloads
run on complex, heterogeneous distributed systems span-
ning CPUs, GPUs, multi-GPU setups, and network inter-
connects. Existing profiling tools either incur prohibitive
overhead, provide limited visibility, or suffer from vendor
lock-in, making real-time, fine-grained performance anal-
ysis impractical in production environments. We present
eInfer, the first eBPF-based system enabling transparent,
low-overhead end-to-end tracing of per-request performance
across distributed LLM inference pipelines without requiring
application modifications. eInfer uniquely correlates events
across CPUs, accelerators, processes, and nodes, delivering
unified, vendor-agnostic observability that approaches the
accuracy of specialized GPU profiling tools. To address the
challenges of scalability, dynamic workloads, and instrumen-
tation gaps on accelerators, we design a runtime-adaptive
tracing mechanism that maintains comprehensive visibility
in real time. Our initial evaluation demonstrates that eInfer
delivers precise, low-overhead profiling, enabling critical in-
sights to optimize LLM serving performance in production
environments.

1 INTRODUCTION
Observing and understanding the runtime behavior of Large
Language Model (LLM) inference systems remains a critical
unsolved challenge [4, 30]. Production LLM deployments
operate as black boxes where developers lack visibility into
how individual requests traverse CPU preprocessing, GPU
kernel execution, memory hierarchies, and cross-device com-
munication [27]. This opacity makes it nearly impossible to
diagnose performance anomalies, optimize resource alloca-
tion, or meet stringent latency SLAs [26]. While operators
can measure aggregate metrics like throughput or average la-
tency, they cannot pinpoint why specific requests experience
slowdowns, which components cause delays, or how batch-
ing decisions impact individual request latencies [13, 15, 21].

The core challenge is that effective LLM inference observa-
tion must satisfy multiple stringent requirements that exist-
ing tools cannot simultaneouslymeet. It must be fine-grained,
providing per-request visibility across all subsystems to di-
agnose why individual requests experience variable latency
across CPU preprocessing, GPU execution, and interconnect
communication [23]. It must be transparent, requiring no
modifications to model code or LLM frameworks, as produc-
tion deployments often involve closed-source components,

managed services, or legacy systems where instrumentation
is impossible [11]. It must be lightweight, introducing mini-
mal overhead to avoid perturbing the runtime behavior of
latency-sensitive systems where even small delays violate
SLAs [8, 14, 22]. It must be hardware-agnostic, supporting
diverse accelerator vendors and CPU-GPU interconnects,
as modern deployments span NVIDIA, AMD, Intel GPUs,
and various interconnect technologies. Finally, it must be
framework-independent, operating consistently across differ-
ent inference stacks and serving environments, from PyTorch
and TensorFlow to specialized engines such as TensorRT-
LLM and vLLM [6].
Traditional profiling approaches fail to meet these re-

quirements. GPU-focused tools like NVIDIA’s CUPTI and
Nsight Systems provide detailed kernel telemetry but lack
CPU-side visibility and request-level context. Framework-
specific profilers such as PyTorch Profiler and TensorFlow
Profiler require explicit instrumentation and are confined
to their respective software stacks. Distributed tracing so-
lutions like Jaeger or application performance monitoring
tools depend on code modifications, making them unusable
in closed-source or managed environments. Most critically,
these tools introduce substantial overhead, often adding tens
to hundreds of milliseconds per request, which makes them
impractical for production systems where every millisecond
impacts user experience.

To break this fundamental tradeoff between visibility and
performance, we introduce eInfer, a transparent observability
framework that enables live, fine-grained tracing of produc-
tion LLM inference systems through eBPF (extended Berke-
ley Packet Filter) [35]. The key insight is that eBPF allows
us to dynamically inject monitoring logic directly into the
kernel, capturing system behavior without modifying ap-
plications or frameworks. By intercepting low-level events
such as GPU driver calls via ioctl, memory operations, and
CPU scheduling decisions, eInfer reconstructs the complete
execution timeline of individual inference requests with sub-
millisecond overhead. This approach enables continuous
monitoring of production systems, providing the visibility
needed to debug performance issues as they occur.
An innovation in eInfer is its ability to extract request-

level semantics from kernel-level observations. We develop
techniques to infer request boundaries from syscall patterns,
correlate GPU command submissions with CPU-side batch-
ing logic, and track cross-device dependencies without any
application cooperation. This enables per-request attribution



even in complex scenarios where multiple batches execute
concurrently across multiple GPUs, precisely the conditions
where traditional profiling breaks down.

The main contributions of this work are:

• We present eInfer, the first system to enable end-to-
end, per-request performance breakdown for LLM in-
ference across CPUs, GPUs, multi-GPU setups, and
interconnects using eBPF.

• We enable transparent, low-overhead tracing that accu-
rately correlates per-request performance across multi-
ple components, devices, and distributed nodes—without
requiring application code modifications or disrupting
production environments.

• Weextend eBPF-based tracing to achieve unified, vendor-
agnostic observability of CPU and accelerator (e.g.,
GPU) execution by correlating syscall and driver-level
activities, delivering insights comparable to specialized
vendor tools like CUPTI.

• We design a scalable, runtime-adaptive tracing mecha-
nism that maintains fine-grained visibility across het-
erogeneous devices, processes, and distributed nodes
in dynamic production environments.

2 MOTIVATION AND CHALLENGES
2.1 Motivation
To understand the limitations of existing profiling tools for
LLM inference observation, we conducted a comprehen-
sive evaluation of three representative approaches: PyTorch
Profiler (application-level), CUPTI (GPU-specific), and eBPF
(system-level). We measured their profiling accuracy, run-
time overhead, and practical usability across various LLM
models and deployment scenarios.
Our first evaluation focused on PyTorch Profiler’s over-

head impact on LLM inference latency. As shown in Figure 1,
PyTorch Profiler introduces severe performance degradation
across all model sizes. The overhead is particularly cata-
strophic for smaller models: Qwen3-0.6B experiences a 4.67×
slowdown, while LLaMA3-8B suffers a 3.16× increase in in-
ference latency. Even as model size grows, the overhead
remains substantial—LLaMA2-13B shows a 2.22× slowdown
and LLaMA3-70B still incurs a 22% latency increase. This
overhead pattern reveals that PyTorch Profiler’s instrumenta-
tion cost dominates the actual computation time for smaller
models, making it entirely impractical for real-time mon-
itoring. Moreover, PyTorch Profiler requires explicit code
instrumentation and often necessitates application restarts
to collect trace data, introducing significant operational fric-
tion in production environments.
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Figure 2: Profiling Results

Takeaway 1: PyTorch Profiler incurs prohibitive
overhead and requires intrusive instrumentation,
making it unsuitable for real-time, scalable LLM in-
ference profiling in production environments.

We next evaluated the accuracy and overhead of CUPTI
and eBPF for GPU kernel profiling. As shown in Figure 2(a),
both tools achieve remarkably similar profiling accuracy
when measuring kernel execution times for critical LLM
operations. Using CUPTI as the ground-truth baseline, we
measured kernel runtimes for three representative opera-
tions: GeMM (0.185ms), LayerNorm (4.929ms), and Softmax
(4.699ms). eBPF reported nearly identical values with devi-
ations of less than 20 microseconds in most cases, demon-
strating impressive precision for a general-purpose system
tracer. More importantly, as shown in Figure 2(b), both tools
maintain negligible runtime overhead. The baseline GeMM
operation takes 138.578ms, while CUPTI increases this to
140.744ms (1.56% overhead) and eBPF to 139.281ms (0.51%
overhead). This sub-2% overhead stands in stark contrast to
PyTorch Profiler, which can inflate execution time by orders
of magnitude, making CUPTI and eBPF suitable for produc-
tion environments.

Beyond accuracy and overhead, we analyzed each tool’s ca-
pabilities across multiple dimensions critical for distributed
LLM inference, as summarized in Table 1. While CUPTI
matches eBPF in GPU profiling performance, it remains lim-
ited to NVIDIA hardware and cannot observe CPU, memory,
or network activity that are essential in distributed deploy-
ments. PyTorch Profiler offers some multi-device awareness
but suffers from prohibitive overhead and requires intru-
sive instrumentation. In contrast, eBPF emerges as the only
solution combining high accuracy, minimal overhead, and
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Feature CUPTI eBPF PyTorch Profiler

Accuracy H#  G#
Overhead H#  #
Device Coverage H#  G#
System Coverage H#  G#
Instrumentation Required   #
Transparency H#  G#
Hardware Agnostic #  #
Multi-device Awareness #  H#
Ease of Integration H#  G#
Scalability G#  #
Dynamic On/Off at Runtime #  #

Table 1: Comparison of profiling tools for distributed
LLM inference. Legend: = full/best,H# = good/partial,
G# = limited,# = none/poor.

comprehensive system coverage. Its ability to dynamically
attach to running systems without code modification pro-
vides transparent visibility across CPUs, GPUs (via syscall
and driver interfaces), memory operations, and network com-
munication. This unique combination of performance and
full-system observabilitymakes eBPF themost practical foun-
dation for understanding complex interactions in modern
LLM serving systems that span multiple devices, processes,
and nodes.

Takeaway 2: CUPTI and eBPF provide highly ac-
curate, low-overhead profiling, with eBPF uniquely
enabling transparent full-system observation across
heterogeneous hardware, making it the most practi-
cal foundation for distributed LLM inference tracing.

2.2 Challenges in Distributed eBPF Tracing
While our motivation study demonstrates that eBPF provides
the foundation for LLM inference observation by combining
low overhead, system-wide visibility, and hardware inde-
pendence, building a practical distributed tracing system
on top of eBPF introduces several fundamental challenges.
These challenges stem from the gap between what eBPF can
observe at the kernel level and what developers need to un-
derstand about their LLM inference workloads. We identify
three critical challenges that must be addressed to realize
eInfer vision of transparent, fine-grained distributed LLM
tracing.
Challenge 1: End-to-End Event Correlation Across De-
vices, Processes, and System Layers.

Distributed LLM inference spans a highly heterogeneous
and dynamic execution environment, involving CPUs, GPUs,
I/O subsystems, and network interfaces, all orchestrated

across multiple processes, threads, and sometimes even mul-
tiple nodes. A fundamental challenge is achieving precise and
consistent correlation of low-level system events across this
stack to reconstruct an accurate execution timeline. While
eBPF excels at tracing kernel-level events (e.g., syscalls, I/O
waits, scheduler decisions), these events lack semantic con-
text about the high-level operations occurring in ML frame-
works—such as transformer layer execution, attention kernel
launches, or token emission phases. Bridging this semantic
gap requires integrating metadata from user-space runtimes
(e.g., PyTorch) while preserving low overhead and without
modifying application code. Additionally, distributed sys-
tems introduce complications like clock drift between nodes,
PID/NID reuse, and asynchronous scheduling, all of which
can break temporal alignment. Multi-process awareness is
further complicated by containerization, dynamic spawning
of worker processes, and inter-process communication via
shared memory or RDMA. Constructing a global, coherent
execution view that maps system-level activities back to
model-level abstractions remains an unsolved and techni-
cally demanding problem.
Challenge 2: Incomplete Visibility and Instrumenta-
tion Gaps on Accelerators.
eBPF is inherently limited in its ability to observe GPU inter-
nals due to the closed nature of most GPU drivers and lack
of native kernel-level tracepoints for accelerator activities.
While it is possible to infer some GPU behavior by observing
related syscalls (e.g., ioctl, mmap, poll) or DMA transfers,
such inference is often coarse-grained, imprecise, and in-
sufficient for capturing detailed execution characteristics
such as kernel launch latency, memory transfer efficiency, or
warp divergence. Tools like CUPTI provide these insights but
are vendor-specific (NVIDIA-only), intrusive, and incompat-
ible with eBPF’s lightweight and hardware-agnostic philoso-
phy. Moreover, integrating CUPTI with eBPF to achieve uni-
fied tracing introduces synchronization and data consistency
challenges, especially when GPU operations are offloaded
asynchronously. As LLM inference workloads increasingly
leverage heterogeneous compute—e.g., GPUs, TPUs, and cus-
tom accelerators—maintaining visibility into execution on
non-standard hardware without compromising eBPF’s low
overhead and portability becomes a critical limitation. Ad-
dressing this challenge requires new techniques for cooper-
ative user-kernel instrumentation or novel abstractions to
bridge visibility gaps in accelerator pipelines.
Challenge 3: Scalable Data Collection, Overhead Con-
trol, and Runtime Adaptability.
Capturing fine-grained system traces in real time across

large-scale distributed environments inevitably generates
a massive volume of telemetry data. Without proper filter-
ing, batching, and adaptive sampling, the instrumentation
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overhead can quickly overwhelm system resources—leading
to probe-induced latency, distorted performance profiles,
or even system instability. Although eBPF is designed for
low-overhead data collection, practical deployments must
still contend with kernel buffer limits, memory pressure,
and contention in high-throughput environments. Further-
more, distributed LLM inference workloads are inherently
dynamic, with nodes joining or leaving, processes being
migrated, models being swapped, and compute resources
being rebalanced on the fly. A tracing system must adapt
in real time to these changes, maintaining probe coverage,
minimizing blind spots, and avoiding stale metadata without
requiring system restarts or reconfiguration. This need for
dynamic, runtime-aware introspection pushes the limits of
current eBPF tooling, which was originally designed for rela-
tively static and localized instrumentation. Finally, once data
is collected, centralized aggregation, synchronization, and
querying across multiple nodes introduces additional chal-
lenges in scalability and fault tolerance—particularly when
attempting to reconstruct long execution traces or identify
performance regressions at sub-millisecond granularity.

3 DESIGN
The design of our system(shown in Figure 3) is motivated
by three fundamental challenges in profiling complex, large-
scale distributed applications. First, it is essential to capture
fine-grained performance metrics across the entire software
and hardware stack without requiring any modifications
to user code or manual instrumentation. Second, meaning-
ful analysis depends on the ability to accurately correlate
events across diverse components and devices, even when
these operate independently or span multiple abstraction
layers. Third, the monitoring infrastructure must be able to
adapt fluidly to changing workload behaviors and system
conditions, all without interfering with normal application
execution. Addressing these challenges calls for a cohesive
and carefully engineered solution—one that combines light-
weight and fine-grained runtime interception, transparent
context propagation, and dynamic observability controls to
deliver comprehensive insight while remaining unobtrusive
and efficient.

3.1 Cross-Layer Event Coordination
To address Challenge 1, which involves end-to-end event cor-
relation across devices, processes, and system layers, we in-
troduce a unified telemetry framework CoTrace that tracks
inference requests as they traverse the entire system stack.
Our framework solves the fundamental problem of correlat-
ing low-level kernel events with high-level ML operations
by systematically instrumenting each stage of the inference

Figure 3: The Architecture of eInfer

pipeline, from initial request arrival through CPU prepro-
cessing, GPU execution, and cross-device communication.

CoTrace follows each inference request through four dis-
tinct execution stages, maintaining correlation across all
transitions in the Table 2.
Context Propagation Through System Layers. The core
innovation in our framework is its ability to maintain request
identity as execution crosses abstraction boundaries. When
a request enters the system, we assign it a globally unique
trace_id composed of a timestamp, node identifier, and
monotonic counter. This ID is then propagated through:

• User-to-kernel transitions: Embedded in syscall ar-
guments via eBPF maps.

• CPU-to-GPU handoffs: Injected into CUDA stream
metadata.

• Cross-process boundaries: Automatically inherited
through eBPF tracking of fork()/clone() syscalls,
where child processes inherit parent’s trace context
without application awareness.

• Network communications: Encoded in NCCL tag
fields or RDMA immediate data.

Semantic Enrichment Without Code Modification. Our
framework bridges the semantic gap between system events
and ML operations through a two-layer approach. At the sys-
tem level, eBPF programs capture raw events with nanosec-
ond precision. In parallel, a lightweight user-space daemon
uses Python introspection hooks (sys.setprofile) to de-
tect ML framework calls without modifying application code.
These two streams are correlated using the propagated trace
ID, allowing us to annotate system events with semantic
information.
Distributed Timeline Synchronization. For multi-node
inference, our telemetry system implements a hybrid clock
synchronization protocol. Each node maintains a local time-
line using hardware cycle counters (TSC), while periodic
NTP synchronization establishes global time anchors. Cross-
node events (e.g., NCCL operations) carry both sender and
receiver timestamps, allowing us to compute clock skew and
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construct a globally consistent event timeline with microsec-
ond accuracy.
Cross-Layer, Event-DrivenExecutionGraph.The teleme-
try pipeline produces a rich execution graph that is tem-
porally aligned and semantically annotated across system
layers. Each node in the graph represents a distinct ML opera-
tion—such as LlamaDecoderLayer.forward(), a KV-cache
copy, or a CUDA attention kernel—while edges capture cor-
related system events, including PCIe transfers, CPU-GPU
context switches, and inter-GPU NCCL communications.
This cross-layer graph facilitates fine-grained profiling and
latency decomposition, enabling precise identification of
inference bottlenecks. It also supports detection of unex-
pected stalls—such as those caused by GPU queue saturation,
memory contention, or RDMA backoff—and guides the op-
timization of scheduling, batching, and resource placement
strategies throughout the execution stack.

3.2 Cooperative Kernel Proxies for
Accelerator Tracing

To address Challenge 2, which highlights eBPF’s limited vis-
ibility into accelerator internals, we introduce Cooperative
Kernel Proxies (CKPs), a hybrid instrumentation approach
that bridges the gap between kernel-level observation and
accelerator execution. CKPs solve the fundamental prob-
lem that eBPF cannot directly observe GPU kernel launches,
memory transfers, or execution details due to closed driver
architectures and missing kernel tracepoints.
Lightweight User-Space Instrumentation. CKPs are min-
imal instrumentation modules embedded within existing
user-space components where accelerator information is nat-
urally available, such as PyTorch’s CUDA runtime, Tensor-
Flow’s GPU executor, or NCCL communication libraries. Un-
like heavyweight profiling tools such as CUPTI that require
vendor-specific drivers, CKPs extract only essential metadata
at points where it is already accessible. This includes ker-
nel launch events (function name, grid dimensions, stream
ID), memory operations (transfer size, direction, buffer ad-
dresses), synchronization points (streamwaits, event records,
barrier operations), and resource allocation details (buffer
creation, destruction, and sharing across contexts).

The key innovation is how CKPs communicate with eBPF
programs without modifying kernel drivers. When a GPU op-
eration occurs, the CKP writes a structured event to a shared
memory ring buffer, which eBPF programs then correlate
with kernel observations(shown in Figure 8)
Multi-Accelerator Support. The CKP interface is deliber-
ately generic to support heterogeneous accelerators beyond
GPUs. Whether tracking TPU operations through XLA run-
time, monitoring FPGA execution via OpenCL, or observing
custom ASIC behavior through vendor SDKs, the same event

schema applies: timestamp, operation type, and minimal
metadata. This uniformity allows our framework to trace
complex inference pipelines that span multiple accelerator
types without vendor-specific modifications to the core trac-
ing infrastructure.

3.3 Adaptive Hierarchical Telemetry
To address Challenge 3, which involves scalable data collec-
tion and runtime adaptability in distributed environments,
we introduce Adaptive Hierarchical Telemetry(AHT)
that dynamically balances trace detail with system over-
head. This framework solves the fundamental problem that
fine-grained tracing across hundreds of GPUs can generate
overwhelming data volumes while system conditions con-
stantly change due to workload migration, node failures, and
resource rebalancing.
Hierarchical Data Reduction and Dynamic Control.
Our framework implements a three-tier architecture where
eBPF programs at the kernel level perform aggressive local
filtering and event coalescing, node-level aggregators ap-
ply pattern detection and compression, and a cluster-level
layer merges traces while maintaining temporal consistency.
High-frequency events like scheduler context switches are
sampled probabilistically, while critical events like GPU ker-
nel launches are always captured. The kernel layer coalesces
repetitive operations into compact representations, reducing
data volume at the source.
The system employs dynamic overhead control through

feedback loops at each aggregator. By monitoring local re-
source consumption (CPU, memory, network), aggregators
automatically adjust sampling rates, aggregation windows,
and active tracepoints to stay within overhead budgets. For
example, during peak inference load, the system might re-
duce CPU scheduling traces while maintaining full GPU ker-
nel visibility, ensuring that the most important performance
data is preserved without overwhelming system resources.
Distributed Coordination and Streaming Pipeline. To
handle the dynamic nature of distributed LLM deployments,
telemetry aggregators implement coordination protocol where
they periodically exchange lightweight metadata about trace
sessions and configurations. When workloads migrate or
nodes join the cluster, they automatically inherit appropri-
ate tracing settings without manual intervention. This de-
centralized approach avoids single points of failure while
maintaining global consistency in trace collection across the
entire cluster.

All telemetry flows through asynchronous, non-blocking
pipelines using lock-free ring buffers and memory-mapped
overflow files. This design handles burst scenarios gracefully,
such as simultaneous launches of thousands of GPU kernels
during model initialization, by applying backpressure rather
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Figure 5: Accuracy and Overhead of Multiple Hooks

than dropping events. Stream processors prioritize recent
events over historical data when buffers approach capacity,
ensuring that the system maintains real-time visibility even
under extreme load conditions.

4 EVALUATION
Testbeds. All our experiments were conducted on systems
equipped with NVIDIA A6000 GPUs with 48GB of HBM. In
addition, each system features 1TB of DRAM, and the GPUs
are connected to the host via PCIe Gen 4.0x16.

To assess the profiling accuracy and overhead of memory
transfer tracing, we first enable only the memory copy hook
between CPU and GPU and systematically vary the transfer
size. As shown in Figures 4(a) and 4(b), eInfer achieves re-
sults comparable to CUPTI,demonstrating its effectiveness
as a lightweight and efficient alternative for GPU memory
transfer profiling, achieving performance nearly identical to
the baseline without instrumentation.
Next, we enable multiple eBPF hooks—including kernel

execution and memory transfer tracing—to assess profiling
accuracy and overhead, as illustrated in Figure 5. eInfer de-
livers high accuracy while maintaining minimal overhead,
closely matching the performance of CUPTI.
Our system is currently under development. Once fully

implemented and integrated, we plan to design a range of
case studies to evaluate its detailed performance breakdown.
In the meantime, we measure the breakdown across host
networking, CPU-GPU data transfer, and kernel execution
time, as shown in Figure 6. With the full implementation, we
will provide a more detailed breakdown of the performance
components currently grouped under “others” in the figure.
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Figure 6: Performance Breakdown

4.1 Related Work
eBPF-Based System Instrumentation. eBPF enables low-
overhead system introspection for CPU [10, 29, 34], mem-
ory [9, 31], and network [5, 12, 19] via tools like bcc [7] and
bpftrace [18].Microservice profilers such as ZeroTracer [32]
and Deepflow [20] use eBPF for metric collection. However,
eBPF’s CPU-centric nature limits its applicability to GPU-
intensive workloads.
GPU Tracing. Tools like CUPTI [16], FasterTransformer
Profiler [17], and PyTorch Profiler [1] provide detailed GPU
telemetry but are either hardware-specific or confined to
user space [2, 3]. Recent systems such as eGPU [33] add eBPF-
style probes on GPUs but introduce CPU-GPU synchroniza-
tion overhead. Our evaluation confirms eGPU’s performance
penalty under LLM inference, limiting its deployment for
latency-sensitive applications.
Distributed Tracing. Frameworks like OpenTelemetry [28],
Jaeger [24], and Dapper [25] trace request flows across ser-
vices but lack low-level system or GPU integration. ML pro-
filers [1, 2] offer execution insights but are typically single-
node and user-space only. Sage [3] integrates system seman-
tics but requires intrusive changes. Our work unifies eBPF
with LLM-level tracing for fine-grained, cross-stack visibility
in distributed inference.

5 CONCLUSION
We present eInfer, the first end-to-end, low-overhead system
for transparent, fine-grained tracing of LLM inference across
CPUs, GPUs, and interconnects using eBPF. Our key contri-
butions include: (1) a novel approach to per-request corre-
lation that spans across multiple components, devices, and
distributed nodes without requiring application changes; (2)
a unified, vendor-agnostic observability framework for both
CPUs and accelerators that achieves near-parity with special-
ized tools like CUPTI; and (3) a scalable, runtime-adaptive
tracing mechanism that maintains real-time visibility in com-
plex, heterogeneous environments.
We are actively developing eInfer, with ongoing efforts

focused on strengthening the robustness, scalability, and
ease of deployment of the system. Once the implementation
is complete, we will conduct comprehensive experimental
evaluations to validate its accuracy, efficiency, and utility for
LLM serving workloads.
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A HOOK POINTS

1 BPF_HASH(active_traces, u32, u64); // pid ->

trace_id mapping↩→
2 BPF_PERF_OUTPUT(gpu_events);
3
4 int trace_ioctl(struct pt_regs *ctx, int fd, unsigned

long cmd) {↩→
5 u32 pid = bpf_get_current_pid_tgid() >> 32;
6 u64 *trace_id = active_traces.lookup(&pid);
7 // Check if trace ID exists and this is an NVIDIA

ioctl↩→
8 if (!trace_id || (cmd & 0xFF00) != 0x4600)
9 return 0;
10 // Emit correlated GPU event with trace ID
11 struct {
12 u64 trace_id;
13 u64 timestamp;
14 } event = {
15 *trace_id,
16 bpf_ktime_get_ns()
17 };
18 gpu_events.perf_submit(ctx, &event,

sizeof(event));↩→
19 return 0;
20 }

Figure 7: eBPF program for correlating GPU kernel
submissions with request trace IDs

1 struct ckp_event {
2 u64 timestamp;
3 u64 op_id; // Unique identifier (e.g., 0x1234)
4 u32 op_type; // KERNEL_LAUNCH, MEM_COPY, etc.
5 char name[32]; // e.g., "GEMM_kernel_stream_3"
6 };
7
8 // CKP logs event to shared ring buffer
9 void log_kernel_launch(const char* kernel_name, int

stream) {↩→
10 struct ckp_event evt = {
11 .timestamp = rdtsc(),
12 .op_id = generate_id(),
13 .op_type = KERNEL_LAUNCH,
14 };
15 ring_buffer_write(&evt); // Non-blocking write
16 }
17
18 // eBPF correlates with ioctl observations
19 int trace_gpu_ioctl(struct pt_regs *ctx) {
20 // Match timing window: CKP event -> ioctl within

1ms↩→
21 struct ckp_event *ckp = find_recent_ckp_event();
22 if (ckp && time_diff(ckp->timestamp, now) <

1000000) {↩→
23 // Correlated: Link GEMM launch to

system-level GPU access↩→
24 emit_correlated_event(ckp->op_id, ckp->name);
25 }
26 }

Figure 8: CKP-eBPF cooperation: User-space logs GPU
operations, kernel-space correlates with system calls
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Table 2: Hierarchical Instrumentation Points Across the Inference Pipeline

Stage Hook Points Captured Events
Request Entry HTTP server accept() Request arrival timestamp

Python handler dispatch Request ID, batch assignment
Thread pool work_queue CPU scheduling, queueing delay

CPU Processing sys_futex (thread sync) Thread coordination overhead
sys_mmap (memory alloc) Tensor allocation patterns
sched_switch/sched_wakeup CPU utilization, context switches
torch.nn.Module.forward() Layer execution boundaries

GPU Execution ioctl(/dev/nvidia*) Kernel submission, memory ops
cuLaunchKernel uprobe Kernel name, grid dimensions
gpu_mem_copy_start/done H2D/D2H transfer timing
dma_fence_signaled GPU completion events
nvml_device_get_utilization Real-time GPU metrics

Cross-Device nccl_send/recv Collective communication
ib_post_send (RDMA) InfiniBand operations
mlx5_cq_poll RDMA completion events
sys_sendmsg (TCP/UDP) Network fallback paths
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